Fourier Integral Operator Canonical Computation with Wave Packets

نویسندگان

  • HERWIG WENDT
  • MAARTEN V. DE HOOP
  • GUNTHER UHLMANN
چکیده

Abstract. We develop an algorithm for the canonical computation of general Fourier integral operators whose canonical relations are graphs. The algorithm is based on dyadic parabolic decomposition using wave packets and enables the discrete approximate evaluation of the action of such operators on data in the presence of caustics. The procedure consists in the construction of a universal operator representation through the introduction of locally singularity-resolving diffeomorphisms, enabling the application of wave packet driven computation, and in the construction of the associated pseudo-differential joint-partition of unity on the canonical graphs. We apply the method to a parametrix of the wave equation in the vicinity of a cusp singularity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Discrete Approximations of Fourier Integral Operators Associated with Canonical Transformations and Caustics

We develop an algorithm for the computation of general Fourier integral operators associated with canonical graphs. The algorithm is based on dyadic parabolic decomposition using wave packets and enables the discrete approximate evaluation of the action of such operators on data in the presence of caustics. The procedure consists in the construction of a universal operator representation throug...

متن کامل

Multiscale Reverse-Time-Migration-Type Imaging Using the Dyadic Parabolic Decomposition of Phase Space

We develop a representation of reverse-time migration (RTM) in terms of Fourier integral operators, the canonical relations of which are graphs. Through the dyadic parabolic decomposition of phase space, we obtain the solution of the wave equation with a boundary source and homogeneous initial conditions using wave packets. On this basis, we develop a numerical procedure for the reverse-time co...

متن کامل

Multi-scale Reverse-time-migration Based Inverse Scattering Using the Dyadic Parabolic Decomposition of Phase Space

We develop a representation of reverse time migration in terms of Fourier integral operators the canonical relations of which are graphs. Through the dyadic parabolic decomposition of phase space, we obtain the solution of the wave equation with a boundary source and homogeneous initial conditions using wave packets. On this basis, we develop a numerical procedure for the reverse time continuat...

متن کامل

Bilinear Fourier integral operator and its boundedness

We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.

متن کامل

The Geodesic X-ray Transform with Fold Caustics

We give a detailed microlocal study of X-ray transforms over geodesics-like families of curves with conjugate points of fold type. We show that the normal operator is the sum of a pseudodifferential operator and a Fourier integral operator. We compute the principal symbol of both operators and the canonical relation associated to the Fourier integral operator. In two dimensions, for the geodesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011